Semiparametric Bayesian approaches to joinpoint regression for population-based cancer survival data
نویسندگان
چکیده
According to the American Cancer Society report (1999), cancer surpasses heart disease as the leading cause of death in the United States of America (USA) for people of age less than 85. Thus, medical research in cancer is an important public health interest. Understanding how medical improvements are affecting cancer incidence, mortality and survival is critical for effective cancer control. In this paper, we study the cancer survival trend on the population level cancer data. In particular, we develop a parametric Bayesian joinpoint regression model based on a Poisson distribution for the relative survival. To avoid identifying the cause of death, we only conduct analysis based on the relative survival. The method is further extended to the semiparametric Bayesian joinpoint regression models wherein the parametric distributional assumptions of the joinpoint regression models are relaxed by modeling the distribution of regression slopes using Dirichlet process mixtures. We also consider the effect of adding covariates of interest in the joinpoint model. Three model selection criteria, namely, the conditional predictive ordinate (CPO), the expected predictive deviance (EPD), and the deviance information criteria (DIC), are used to select the number of joinpoints. We analyze the grouped survival data for distant testicular cancer from the Surveillance, Epidemiology, and End Results (SEER) Program using these Bayesian models.
منابع مشابه
Generalized Ridge Regression Estimator in Semiparametric Regression Models
In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...
متن کاملبرتری روش بیزی در تحلیل بقای 8 ساله سرطان پستان و تعیین عوامل موثر بر آن در شهر یزد
Introduction: Breast cancer is one of the common diseases among women with various factors involved in its development. The aim of this study was to determine the factors affecting the survival of women with breast cancer in Yazd using Cox's model as Bayesian and Classic. Method: A population-based study of 538 breast cancer women registered in the clinical database of the Ramezanzade Radiothe...
متن کاملBayesian Semiparametric Regression for Median Residual Life
With survival data there is often interest not only in the survival time distribution but also in the residual survival time distribution. In fact, regression models to explain residual survival time might be desired. Building upon recent work of Kottas and Gelfand (2001) we formulate a semiparametric median residual life regression model induced by a semiparametric accelerated failure time reg...
متن کاملBayesian Joinpoint Regression Model for Childhood Brain Cancer Mortality
Erratum In the original running head of this article, we incorrectly spelled author Netra Khanal's surname. We regret this error, and have corrected the article. The Bayesian approach of joinpoint regression is widely used to analyze trends in cancer mortality, incidence and survival data. The Bayesian joinpoint regression model was used to study the childhood brain cancer mortality rate and it...
متن کاملEstimating joinpoints in continuous time scale for multiple change-point models
Joinpoint models have been applied to the cancer incidence and mortality data with continuous change points. The current estimation method [Lerman, P.M., 1980. Fitting segmented regression models by grid search. Appl. Statist. 29, 77–84] assumes that the joinpoints only occur at discrete grid points. However, it is more realistic that the joinpoints take any value within the observed data range...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computational statistics & data analysis
دوره 53 12 شماره
صفحات -
تاریخ انتشار 2009